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Applications of capillary electrophoresis and laser-induced 

fluorescence detection to the analysis of trace species: 

From single cells to single molecules 

Qifeng Xue 

Major Professor: Edward S. Yeung 
Iowa State University 

Several separation and detection schemes for the analysis of small volume 

and amount of samples, such as intracellular components and single enzymes, 

were developed in this work. Laser-induced fluorescence (LIF) detection 

provides a very sensitive approach for both direct and indirect detection in 

capillary electrophoresis (CE). 

First, indirect LIF detection and capillary electrophoresis were used to 

quantify lactate and pyruvate in single red blood cells. By choosing a highly 

efficient fluorophore and adding 1% glucose to the running buffer to stabilize the 

system, a detection limit of around 20 attomoles was achieved for small anions, 

which resulted in the easy quantification of targeted anions in single 

erythrocytes. 

The measurement of the activity for sub-attomole enzymes inside single 

red blood cells presents a high challenge. The assay of specific enzyme activities 

was achieved by monitoring the highly fluorescent enzjonatic reaction product, 

NADH. By adding proper non-fluorescent substrates into the running buffer, 

the enzymes will catalyze one specific reaction after they are separated into 

different zones and the CE flow is stopped. The fluorescent products were 
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related to enzyme activity. Consequently, the enzyme activity can be quantified 

by monitoring the fluorescent product. At about biological pH 7.4, lactate 

dehydrogenase (LDH) isoenzyme activities were assayed for single red blood 

cells. A detection limit of 1.3 x lO'^l moles for lactate dehydrogenase was 

achieved by the combination of on-capillary reaction and electrophoresis. The 

present approach is also applicable to the assay of multiple enzymes by 

introducing appropriate substrates. Since lactate dehydrogenase activity serves 

as a good marker for certain diseases, the ability to quantify individual 

isoenzymes at the single cell level is of clinical importance. Leukemia cells were 

analyzed to evaluate the value of LDH activity as a marker for the diagnosis of 

leukemia. From the single cell analysis, we found that LDH activity is not a 

unique marker for diagnosis of leukemia, although the LDH activity in leukemia 

cells is lower than that in normal white blood cells. 

Reactions of single LDH-1 molecules were investigated by monitoring the 

reaction product with LIF detection. By filling a narrow capillary tube with a 

very low concentration of LDH-1 and excess lactate and NAD+, discrete product 

zones of NADH associated with individual LDH-1 molecules are formed. We can 

quantify molecular concentrations down to 10"!'^ M, and can also measure their 

activities. From the products formed during two consecutive incubation periods, 

each LDH-1 molecule maintains the same distinct activity over a 2-hour period. 

We found that the same kind of enzyme molecules can have different activities, 

which vary in a factor of 4. The differences in activity might be caused by 

different stable conformation of LDH-1 enzymes. 
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GENERAL D^TRODUCTION 

Dissertation Organization 

This dissertation begins with the general introduction of literature related 

to this work, in which the background concepts and the most recent progresses 

in this area are presented. The following chapters are arranged in the way such 

that the research publications of the author are each presented as separate 

chapters. Finally, a general summary presents the final comments on this work 

and a listing of the cited references for the general introduction concludes the 

dissertation. 

Capillary Electrophoresis 

Electrophoresis as a very powerful separation technique ̂ has been well 

known and applied in the separation of charged species based on differential 

migration in an applied potential field. Since the early 1980's, after Jorgenson 

and his colleagues laid down the foundation for running electrophoresis in a 

narrow bore (<100 fim) fused silica tube (capillary) to separate charged species^.^, 

capillary electrophoresis has begun to achieve scientific recognition and has been 

undergoing an explosive progress. Capillary electrophoresis (CE) offers several 

exciting features: 1) highly efficient and extremely fast separations of both ionic 

species and neutral compounds; 2) requiring very small amount of sample for 
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one analysis (~nl); 3) using the capillary tube acting as a microreactor to carry 

out microreactions, after which one microscale separation and quantification are 

executed. To date, a wide spectrum of analytes has been proven to be feasible in 

analysis by this technique. Not only can the small ions be separated and 

analyzed by CE coupled with different detection schemes, but also the neutral 

molecules and the large biologically interesting molecules can be analyzed with 

different modes of capillary electrophoresis. 

Depending on the analytes, several modes of CE techniques can be 

selected to perform a quick, efficient analysis. As recently categorized by Knox'^, 

four distinct capillary separation techniques are widely accepted and applied in 

separating different species, although different names and categories are still 

used by different authors based upon the separation mechanisms. Capillary 

electrophoresis was originally called capillary zone electrophoresis (CZE)^ , in 

order to indicate that the separated analytes migrate as separately independent 

non-contiguous zones. Since each zone of analytes might migrate at a different 

speed, both cations and anions can be determined in the same run with CE. 

Molecules and ions of similar charge to mass (Z/M) ratio, such as DNA and 

proteins, lead them to have very similar electrophoretic mobilities in free buffer 

solution. Capillary gel electrophoresis (CGE) can provide the capability ̂ .6 of 

resolving these analytes due to a different separation mechanism. The gel filled 

capillary can obstruct different sizes of analytes to different extents, or the 
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entangled gel molecules provide a sieving effect, in which different sizes of 

molecules penetrate the gel medium at different speeds and are separated. The 

separation efficiency and the fast speed in DNA separation by CGE, coupled 

with various sensitive detecting methods, have increased the pace of potentially 

sequencing the human genome 

Terabe and his co-workers first tried to add modifiers (e.g., SDS) into 

the running buffer for separating neutral compounds, as well as some ions and 

ion pairs, which are difficult to separate with CE. The buffer modifiers, usually 

surfactants, form micelles when the concentration is higher than the critical 

micellar concentration in the solution. When the analytes are injected into the 

capillary filled with the buffer solution containing micelles, the analytes are 

partitioned between background electrolyte and micelles. Thereby, the 

separation is achieved, based upon primarily partitioning differences between 

analytes. The process is in fact chromatographic and not electrophoretic, even 

though the electroosmotic flow still plays a very important role in transporting 

the solution through the capillary. Accordingly, this technique is usually called 

capillary micellar electrochromatography (CMEC) or micellar electrokinetic 

chromatography (MEKC). By choosing chiral active micelles, several works^^-^'^ 

demonstrated that this technique can be used to separate chiral compounds, 

such as D,L-amino acids and chiral drug molecules. 
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Although capillary liquid chromatography, or capillary electrochro-

matography does not really belong to capillary electrophoresis 

according to the separation mechanism, there are still some similarities between 

CEC and CE, since both of them use an electric field to drive the liquid carrying 

the analytes through the capillary tube. In CEC, the capillary is packed with a 

conventional HPLC stationary phase (even though the particles may be much 

smaller because of the small tube inside diameter). The analytes are separated 

primarily based upon their different partition ratios between the mobile phase, 

electrolyte, and the packed stationary phase. With this technique, the analytes 

of neutrals, ions and ion pairs can be separated, and the electric field might be 

used to achieve additional selectivity and efficiency. 

Optical detection in CE 

To detect extremely small amounts of materials is always challenging for 

various detecting methods. The often nano-liter range of analytes available in 

the capillary electrophoresis especially requires highly sensitive and fast 

response detectors, which do not disturb the electric field for running CE. A 

number of detection methods have been shown to be effective and sensitive for 

CE analysis. In this part, the absorbance detection and fluorescence detection 

will be covered briefly in both direct and indirect detection schemes. As a 

number of excellent and comprehensive reviews have been available that covers 
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the development of CE and its detection methods^^---, more detailed information 

of CE detection systems can be found in these resources. 

Absorbance Detection 

Among the advantages associated with UV-Vis absorbance detection for 

CE, the nearly universal nature and easy coupling for on-capillary detection 

prevail. However, the short pathlength inherent with a capillary tube restricts 

the sensitivity for UV-Vis absorbance detection. Usually, the short optical 

pathlength (-50 |J.m capillary i.d.) typically results in concentration limits of 

detection (CLOD) on the order of 10 ® M ^3. The benefits of UV-Vis measure­

ments for CE were discussed in ref. 24. With multiwavelength UV-Vis 

absorbance detection usually available with the commercial CE instruments, 

additional chemical selectivity can be obtained. 

In order to overcome the low sensitivity of UV-Vis absorbance 

measurements for CE analysis, techniques and instruments using different 

capillary geometries and improved detection cell designs were developed and 

described in many publications^s.se According to Beer's law, the optical 

absorbance of a sample, the signal associated to a certain concentration of 

sample, is directly proportional to the optical pathlength through which the 

absorbance is measured. Therefore, the effective extension of optical length for 

the measurement is obviously leading to an enhancement in the limit of 
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detection (LOD), if there is no peak broadening effect involved in a specific 

design. Also, a ball lens, when put close to the capillary, is found the most 

effective in coupling the light into and through the capillary^'^. 

Chervet et al.^s designed and manufactured Z-cells by bending the 

capillary to extend the optical pathlength from 75 |am to 3 mm. With this special 

design, a 5-fold improvement in sensitivity was achieved, although there was a 

40-fold increase in the pathlength, because the background noise was also 

tremendously enhanced. By optimizing the efficiency in light throughput, the 

enhancement in detection sensitivity was significantly increased to 17-fold. An 

alternative to increase the optical pathlength was to use a bubble-shaped cell for 

measurement. Basically, one region of the capillary can be expanded by glass-

blowing or controlled local etching to create a longer absorption pathlength cross 

the capillary. This kind of detection cell is commercially available with 3 time 

expansion's ^nd was extensively studied in Ref 30 for up to 15x radial 

expansion. The expansion requires much better focusing optics to make sure 

that the light beam remains collimated over a longer distance, in order to fully 

utilize the enhancement provided by the pathlength expansion. By using a laser 

beam to measure the absorption^®, an 8 times enhancement of measured 

absorbance was observed. Another alternative to gain a longer optical 

pathlength3i'32 was to perform electrophoresis in "flattered" channels (square 

and rectangular capillaries). This geometrical capillary can provide efficient 
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heat dissipation. When the narrow separation channel dimension is maintained, 

at the same time the longer dimension provides the requirement of longer 

optical pathlength for enhancing absorbance detection sensitivity. However, the 

fragility of the thin-walled fused silica tubing is a great concern when they are 

routinely used for doing analyses. Some other techniques and special design for 

increasing the pathlength included multireflection flow celF^ and axial-beam 

irradiation34-36. both cases, the optical pathlength of the capillary can be 

increased tremendously, while the narrow separation dimension as well as the 

separation efficiency is maintained. By carefully constructing the 

multireflection flow cell, a 40-fold increase in sensitivity was demonstrated^^ 

with a 44-fold increase in pathlength. With the axial-beam irradiation, the 

absorbance indicates the sum of the absorbance signals resulting from all 

analytes that existed in the capillary. As components elute out the capillary at 

different speeds, the total absorbance decreases in a step-like manner. Total 

internal reflection was used to let the light propagate efficiently along the 

column. An enhancement of 7-fold in detection sensitivity was also achieved 

with axial-beam irradiation. 

In addition to increasing the pathlength to improve the absorbance 

detection sensitivity, the double beam optical approach has been the most 

popular detection scheme in commercial instruments to compensate for the 

intensity fluctuations. The principle is that a second detection channel of no 
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analyte is serving to monitor the instantaneous variations in the light source, 

and then can be used to normalize the measurements in the sample channel. 

Virtually, the normalization process can eliminate the part of measurement 

fluctuation caused by the light source fluctuation. Based on this idea, a double-

beam laser absorption was used to achieve lower LOD by reducing the noise 

leveP'^-^9. With the double-laser beam absorbance system, a LOD of 2x10"® M of 

malachite green was achieved. 

Fluorescence Detection 

Because fluorescence detections can provide the highest sensitivity for CE, 

and is easy to couple for on-column detection, it becomes more popular, 

particularly for the determination of biologically interesting molecules that 

exhibit native fluorescence. Compared to absorbance detection, fluorescence 

detection typically results in sensitivity gains of 1-3 orders of magnitude, 

depending on the light source, its intensity and stability, fluorescence efficiency 

and background interference, as well as the detector configuration'^^. The reason 

for the big difference in LOD between absorption and fluorescence measure­

ments is the way the signal is monitored. In absorption, the small signal from 

the transmitted intensity is monitored at the presence of a relatively high 

background signal, the reference intensity. Generally, it is not easy to measure 

a very small signal change on a high background, since a small fluctuation on 
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the background can overlap the small signaH^. On the other hand, the 

fluorescence measurements can be performed with a negligible background 

signal, which means that even a very small signal; can be easily recognized. If 

stray light and background signal are controlled, increasing the excitation 

intensity will produce larger signals and improved LOD in fluorescence. Of 

course, the intensity needs to be carefully controlled to avoid the photo-

bleaching. With a high power laser beam to excite fluorescence, the short optical 

pathlength in CE is less problematic for achieving low LOD, even though the 

fluorescence intensity is also linearly dependent on the pathlength. 

The most popular geometry for constructing a laser induced fluorescence 

(LIF) detector is orthogonal''2,43 fhe construction is simple and rugged. The 

well-collimated laser beam can be focused to a beam diameter determined by the 

diffraction limit of light with a short focal-length lens. The focused laser beam 

can deliver a high photon flux to the interior of a capillary to allow efficient 

excitation of the analytes. Since the laser beam can be focused to a very small 

diameter, much smaller than the inner capillary bore, appropriate alignment of 

the capillary to let the laser beam pass through the capillary center will 

minimize the background level caused by the scattered light. Appropriate 

spatial and spectral filterings are always necessary in reducing the background. 

To collect a large part of the fluorescence, a high numerical aperture (NA) 

microscope objective is desired for collecting and focusing the fluorescence light 
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on a photomultiplier tube (PMT). With this design, a LOD of 3xl0-i2 M of 

fluorescein was achieved with a Unear dynamic range of more than 4 orders of 

magnitude'^2 

One very efficient geometry is utihzing an epi-illumination fluorescence 

microscope with laser excitation'*'^. This geometry offers performance 

comparable with the best detection schemes in CE. A high numerical aperture 

objective is used to tightly focus the light into the detection region while 

increasing the solid angle for light collection. Since this optical system can view 

a very small field and allow the adjusting of the depth of field, only the interior 

of the capillary is probed after suitable adjustments. The stray light and 

background fluorescence can be rejected by spatial and spectral filters. In Ref. 

45, this geometry also has been demonstrated to be capable of monitoring 

separations in multiple capillaries. By lajdng multiple capillaries in parallel on 

a translational stage, DNA-sequencing runs have been performed in 24 

capillaries and detected with epi-illumination fluorescence detection system. 

This set-up opens the possibility for fast sequencing DNA in the future, by using 

two-color fluorescence detection and a two-dye-labeling protocol. 

One way to reduce the background noise produced by the capillary wall is 

to use a sheath-flow cuvette as the detection cell With this construction, 

the stream flows out the capillary column can be confined and hydrodynamically 

focused into a narrow stream by a sheath flow. The diameter of the sample 
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stream is determined by the ratio of sheath flow rate and the sample flow rate. 

The laser beam can be focused tightly through the sample beam to eliminate any 

noise contribution from scattered light and fluorescence light originating from 

the capillary walls. This has allowed detection of l.TxlO-^i moles FITC-arginine. 

Lately, multiple sheath flow is established within a flow cell to run multiple 

capillary electrophoresis^®. An intersecting laser beam is used to excite 

simultaneously the analytes in different capillaries and the detection is 

performed by a CCD camera. This is one of the approaches toward speeding up 

DNA-sequencing by running a mutltiplexed capillary array. 

Since most analytes do not fluoresce, or have very low fluorescence 

efficiency, derivatization of sample is one necessary approach for extending 

fluorescence detection to determine many analytes. Precolumn, on-column and 

post column have been reported to be applicable for derivatizing different 

samples with a variety of fluorescent reagents'^^-^^. If a better detection limit is 

desired, one can always rely on the laser induced fluorescence detection, no 

matter native fluorescence will be used or derivatization is necessary before 

undergoing the detection. 

Indirect Detection 

For those species without appreciable functional groups for direct 

measurement, indirect detection stands up as a quite universal and applicable 
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method^^ With indirect detection, the analyte physically displaces a 

chromophore or fluorephore present in the background electrolyte. In capillary 

electrophoresis, a charged chi-omophore or fluorephore is used so that the 

analyte ions of like charge will displace them, while ions of opposite charge may 

form ion-pairs with them. The response by the detector is a decrease in the 

signal, which allows detection of many species that would ordinarily be detector 

inactive. Both indirect absorbance53.54 ^^d fluorescence^^ ̂ ® detection have been 

demonstrated very practical and quite rugged in analyzing different species, 

such as small cations and anions. 

Applications 

Small Ions 

The development of new separation methodologies and sensitive, rugged 

detection approaches for the analysis of small ions by capillary electrophoresis 

continues to grow. By forming complexes with a visible light-absorbing 

chelating agent^'^, 22 metals were separated at different runs of various pH 

values. In a standard procedure, the buffer solution containing the chelating 

agent at appropriate pH was used for running CE, and the sample solutions 

containing excess amounts of the chelating agent were injected for analysis. The 

separation largely depends on pH, with the elution order changing at different 
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pH values. Turcat and co-workers^® used capillary electrophoresis to monitor 

concentration of organic acids in snow and rain water. They found that CE is 

suitable for measurements in environment for the reasons of time, sensitivity 

(10"'' M)and sample amount (nl). Morin and co-workers used imidazole and 

benzylamine as the electrophoretic buffers^^ to determine several alkali and 

alkaline-earth cations by indirect detection with high enough sensitivity of 50 

ppb to quantify their presence in mineral waters. Lagoutte et al.^o demonstrated 

the possibility of using CE to determine several small anions. Other works 

discussed the optimizations of separation and detection of low molecular mass 

anions^^'®2. The sensitivity is governed by the molar absorptivity of the 

chromophore, its charge and transfer ratio. The good match for the mobility 

between chromophore ions and analyte ions also plays a very important role for 

the sensitivity and separation efficiency. Suppression or reversal of the 

electroosmotic flow (EOF) in the capillary was shown to enhance the separation 

selectivity®'^. Similarly, these same EOF modifiers can be used to dramatically 

shorten the time required for one analysis CE has been used successfully to 

monitor small ions in widely varying samples. 

Chiral Separation 

Chiral separation is always very challenging as the samples have almost 

exactly the same properties except the difference in optical activity. Many chiral 
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separations have been reported by using chiral selective complexing agents in 

the CE buffer. Zare and co-workers reported the first chiral separations in 

The separation was based on complexation of D,L-amino acids with a Cu(II) 

complex of L-histidine. Later on, cyclodextrins were found to be very effective 

chiral selector Different chiral compounds were separated using 

cyclodextrins for inclusion complexation. Garrison and co-workers"o also 

demonstrated the separation of three optically active herbicides by adding 

cyclodextrins into the running buffer. Walbroehl et made a comparison of 

HPLC, with a chiral crown ether stationary phase, and CE, with a chiral crown 

ether dissolved in the operating buffer, for the separation of enantiomers. When 

analogs of DOPA and tyrosine were separated, CE and HPLC yielded similar 

resolution. As mentioned in Ref. 72, the separation and quantification of 

enantiomers are an important application of CE. Application areas include 

enantiomer purity testing of pharmaceuticals and herbicides, reaction rate 

monitoring, stability testing and chemical analysis. 

Proteins and Peptides 

Capillary electrophoresis is a very powerful tool for the separation and 

analysis of proteins and peptides. Considerable work has already been done on 

the separation of proteins and peptides by CE. Chen et al.'^^ developed a simple 

method for the characterization of food proteins by CE. Major proteins in 
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chicken eggs and cow's milk were characterized and quantified by the CE 

technique. Wu and Regnier'^-* utilized non-cross-linked linear polyacrylamide 

gels to perform a size-based sieving separation of SDS-protein complexes. The 

system could resolve model proteins differing by as little as 10% in molecular 

mass. The rapid separation of SDS-protein complex in different polymer 

media'^^-'^" (e.g., dextran and PEG) was performed, in which the migration speed 

is related to the protein molecular mass. Due to the low to moderate viscosities, 

the linear polymer networks could be replaced routinely. 

Other modes of CE were also used for protein separation and analysis. A 

reproducible, quantitative isoelectric focusing capillary electrophoresis method 

was developed'^s. Strege et al.'^® ®° evaluated protein separations in 

polyacrylamide-coated and Cis-derivatized silica capillaries with electrophoretic 

buffers containing micelles. These conditions allowed simultaneous separation 

of acidic and basic proteins. Pederson and co-wokers investigated the separation 

of three isoforms oiSerratia marcescens nuclease using free solution CE, MEKC 

and capillary isoelectric focusing (cIEF)^i. cIEF gave a resolution superior to 

MEKC, although both could be used to resolve the proteins; whereas free 

solution CE was unsuccessful in separation of these 3 isoforms. 

CE is an excellent technique for peptide mapping, since only a very small 

amount of sample is required. Novotny et al.^^.ss developed a variety of different 

peptide-mapping schemes with emphasis on the procedures that can be done 
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with limited quantities of proteins. Three protein digestion reagents were used, 

trypsin, chymotrypsin and cyanogen bromide, to cut the protein at different site. 

They also used two different amino acid-selective fluorogenic reagents to 

derivatize the peptides. Both UV-absorbance and laser induced fluorescence 

detection were used to measure the peptides separated by CE. Other 

workers®'^'®^ developed the analysis procedures involving on-column digestion for 

peptide mapping. One of the procedures immobilized trypsin on the inner 

surface of a 50-cm length of fused silica capillary for on-line digestion of minute 

amounts of proteins. The trypsin modified fused silica microreactor was directly 

interfaced to a CE separation capillary for on-line digestion and mapping of 

picomole quantities of proteins. Chang and Yeung®^ utilized pepsin for on-

column digestion of as little as 10 finoles of p-lactoglobulin in 1.5 hr. This is the 

smallest amount of total protein used to produce a peptide map using native LIF 

detection. 

The separation of small peptides by a different type of CE was 

investigated to optimize the separation conditions and to compare the different 

charge to size parameters used in correlating peptide migration. For a series of 

equally charged polyalanines, the best resolutions were achieved at low pH 

when a large metal ion such as Zn2+ was added into the buffer. The separation 

of peptides at pH 2.5 improved as temperature was decreased®'^. MEKC was 

proved to be useful for high resolution separations involving peptides with 
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similar electrophoretic mobilities. The micelles chosen either have very weak 

interactions with peptides®^ or are used together with organic modifiers''^ to 

prevent complete association of the peptides with the micelles. 

DNA Separation and Sequencing 

Driven by rapidly sequencing the human genome, DNA separation and 

sequencing techniques have advanced at a very fast pace. Since DNA fragments 

have a very similar charge to mass ratio, it is extremely hard to separate them 

in free solution CE. A variety of water soluble polymers have been tried to 

promote the separation of DNA^o. Basically, the polymer is dissolved into the 

running buffer to form a gel solution. After filling the capillary with the gel 

solution, the different length polymer chains form different size loops or holes 

which provide the size selection. When the DNA molecules are injected into the 

gel filled capillary, they are separated based on their sizes. 

Agarose is a popular gel matrix for separating DNA. The selectivity of 

DNA separation in the agarose gel-filled capillary was found to be a complex 

function of the temperature^^-^^ The upper limit of the size range of DNA for 

separation in agarose solution was as high as 12 kilobases (kb). In a 1.7% 

agarose solution, the resolving power of DNA less than 1 kb in size is high. 

Resolving power for DNA larger than 1 kb increased when the agarose 

concentration was increased in the range 1.0 - 2.6%. Polyacrylcimide is also a 
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popular gel matrix used to separate DNA samples^^-^'. With a polyacrylamide 

gel filled capillary and ethidium bromide as an intercalator, the DNA fi-agments 

from 72-1353 bp were well resolved within 12 min. Linear polyacrylamide was 

also tried as a sieving matrix for separating DNA fragments. Single-base 

adjacent peaks of FITC-labeled DNA sequencing fragments were resolved and 

detected up to for 520 base long fragments. 

Other polymers were also used for separation DNA fragments. McGregor 

and Yeung^^ demonstrated that methyl cellulose was very efficient as a sieving 

agent for separating HAE III DNA fragments. Most recently, Chang and Yeung" 

found that linear polyethylene oxide (PEO) showed different resolving power for 

different sizes of DNA fragments, depending on the molecular weight of the PEO 

used. Based on the correlation between PEO molecular weight and resolving 

power, they developed a series of mixtures containing various molecular weights 

PEO to optimize the gel composition for the best resolution of DNA fragments 

and samples for DNA sequencing. There are several advantages for using PEO 

as gel matrix. First, the separation speed is faster than other gel matrices. 

Second, the viscosity of PEO is lower than other gel matrices such that it is 

easier to replenish the gel medium between runs. Third, the background is 

much lower than that for the other gel medium when using LIF for detection. 

Lately, Fung and Yeung^® made a big breakthrough in using PEO for DNA 

sequencing. By treating the capillary with 0.1 M HCl before filling the capillary 
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with PEO gel solution, the speed for DNA sequencing is even faster while 

retaining resolution. 

Capillary electrophoresis is also a popular method for analyzing 

polymerase chain reaction (PGR) products. A novel molecular technique^''' was 

developed for the identification of specific bacterial species by using CE to 

analyze the PGR amplified rRNA product from a mixture of bacteria. Gelfi et 

al.^8 detected a point mutation in PGR amplified DNA, based on capillary 

electrophoresis in sieving liquid polymers in the presence of temporal thermal 

gradients. In the case of an individual heterozygous for a point mutation, the 

expected four-band pattern is obtained. Gapillary electrophoresis was feasible 

for detection of hybridization between synthetic oligonucleotides and HIV-l 

genomic DNA amplified by PGR. The GE method for identifications of HFV-l 

and HTLV-I PGR products appears interesting in light of its reproducibility, 

sensitivity and because it is fast and suitable for detection of DNA/DNA and 

DNA/RNA hybrids99. 

Single Cell Analysis 

The capability of handling extremely small volumes of sample and the 

high separation efficiency inherent with GE make it a unique technique for 

analyzing single cells. Several groups have developed schemes for analyzing 

intracellular components in different cells. Jorgenson and co-workers 



www.manaraa.com

20 

demonstrated the capability of CE to sample and analyze whole cellsio*^ and a 

detailed analysis of single cells by using open tubular liquid chroma-

tographyio^'i"-. For quantifying different components, they utilized both LIF and 

electrochemical detectors to determine appropriate intracellular compounds, 

such as amino acids and neurotransmitters. Ewing et al. has developed several 

methods for the analysis of single cells with Capillaries with i.d. as 

small as 2 }im have been used to separate cytoplasmic samples. Actually, since 

only one small portion of the cytoplasm is enough for one analysis, these 

represent subcellular measurements. A variety of neurotransmitters were 

quantified by electrochemical detection. They also demonstrated the capability 

of using on-column derivatization to determine several amino acids in single 

PC 12 cells^o® and using on-line CE-mass spectrometry to identify several 

intracellular proteins in erythrocytes 

The erythrocytes as the most well characterized cells 1^°, with its 

intracellular components measured by analyzing large numbers of cells, from 

which the amount in one cell is calculated. The features obtained thus represent 

the average value. To analyze erythrocytes at the single cell level is very 

challenging in terms of the total amount of sample available for the analysis. 

The analysis of single red blood ceils can provide more information for better 

understanding the functions and properties of individual cells. To date, different 

schemes have been established for determination of intracellular components in 
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the red blood cells^^i-ii^. Sodium (Na+) and potassium (K-^) were measured 

with indirect fluorescence detection. By using laser induced native fluorescence 

detection, several major intracellular proteins were quantified Different 

variants of hemoglobin were determined in fetal, diabetic and normal red blood 

cells ii''. Derivatization proved to be applicable for analyzing intracellular 

glutathione (GSH) Particle counting technique could detect zmole (lO-^i 

mole) levels of glucose-6-phosphate dehydrogenase (G6PDH) Several single 

cell analysis techniques were also developed in this dissertation work for 

analyzing different compounds, such as pyruvate lactate and lactate 

dehydrogenase (LDH). Chang and Yeung^i® demonstrated that native 

fluorescence detection and CE separation could be used to analyze single adrenal 

medullary cells. This method was successfully used to quantify epinephrine and 

norepinephrine in individual bovine adrenal medullary cells, which provides a 

promising method for the study of neurochemicals. 

Analvsis Associated with On-Column Reaction 

If one short zone of the capillary with a given i.d. is used as a reactor, the 

volume of the reactor will be well defined, and very small since capillary i.d.s are 

usually 50 }im or less. The fused silica capillary wall is quite inert which is 

important for carrying out a chemical reaction. The differences in 

electrophoretic mobilities for different species provide a chance to bring them 
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together and mix them in the nanoliter scale, which means that the microscale 

reaction is possible. Regnier and coworkers established an electrophoretically-

mediated microassay (EMMA) scheme for analyzing different enzymes ii'7-i2o 

this technique, the analyte and reagents are introduced into the capillary as 

distinct zones. Upon applying an electric potential, these zones electro-

phoretically merge due to differences in their electrophoretic mobilities. The 

reaction is then allowed to proceed within the capillary either in the presence or 

absence of an electric field. In the absence of the electric field, after mixing the 

analyte and reagent zones, the products will be accumulated in that mixed zone. 

Depending upon the reaction speed, a chemical amplification provided by the 

reaction will lead to a very sensitive detection of the analyte (e.g., a few 

hundreds of leucine aminopeptidasei^^ can be detected), since usually one of the 

products or one of the reagents will be monitored for quantifying the analyte. In 

order to quantify the analyte in this method, the analyte has the catalytic 

property, and the reagents have to be maintained at a saturated concentration. 

At this condition, the reaction speed will only depend on the analyte available in 

this mixture. The most impressive analysis performed with this method is to 

analyze different enzymes^i'^'ii^. The analysis of the substrates is also possible 

with on capillary reactioni2i,i22 this case, the substrates are usually 

compounds that do not have an appreciable property for direct measurement 

(e.g., alcohol or sugar). 
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INDIRECT FLUORESCENCE DETERMINATION OF LACTATE 

AND PYRUVATE IN SINGLE ERYTHROCYTES 

BY CAPILLARY ELECTROPHORESIS 

A paper published in the Journal of Chromatography ^ 

Qifeng Xue and Edward S. Yeung 

ABSTRACT 

A scheme of using fluorescein as the fluorophore for indirect detection of 

anions was demonstrated. This system is quite stable at a fluorescein concentra­

tion of 100 mM even without any other buffer components. Different injection 

modes affect the limit of detection (LOD). A LOD of about 20 attomoles was ob­

tained for lactate under optimal conditions. Lactate and pyruvate in the 

intracellular fluid of erj1;hrocytes were measured in this manner. The average 

amounts in a single erythrocyte for lactate and pyruvate are 1.3 and 2.1 

femtomoles, respectively, or a ratio of 1.6 for pyruvate to lactate. Variations of 

the absolute amounts and the ratios are fairly large among a group of 27 cells 

examined. This is consistent with the difference of cells in size and composition. 

Although the migration times changed by up to 20% during a series of runs from 

the influence of concomitants in the cells, the migration time ratio was 

maintained around 1.072 with 3% relative standard deviation. 

1 Reprinted with permission from Journal of Chromatography A, 661 (1994) 287-

295. Copyright © 1994 Elsevier Science B. V. 
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INTRODUCTION 

Indirect detection, as a universal detection approach for ions in capillary 

electrophoresis (CE), is widely used for the determination of both organic and in­

organic compounds that do not possess a suitable detection property To a 

first approximation, this detection scheme is based on charge displacement be­

tween the analyte and a background ion. As many interesting compounds do not 

always possess a physical property suitable for direct detection, indirect 

detection became a popular scheme in both absorption and fluorescence 

The limit of detection (LCD) for indirect detection is directly proportional to the 

concentration of the fluorophore used in the running buffer. By lowering the 

concentration of the background ions without sacrificing the d3mamic reserve, 

the LCD can be further improved. Despite the impressive LCD obtained in Ref. 

(1), further improvement is necessary for the application of this detection mode 

to the determination of certain components at the single-cell level. Fluorescein 

is well-known for its high fluorescence efficiency and is conveniently excited by 

visible light. So far, little work has been done to optimize the conditions 

necessary for using fluorescein for the indirect detection of anions. 

Determining the chemical and biochemical composition of a single cell can 

help to elucidate the detailed functions of some organisms. Potentially, it can 

provide useful information for diagnosis of diseases at an early stage. Much 

work has been done recently regarding the chemical analysis of individual cells 

because of the promising biomedical applications. Various schemes were de­

veloped for determination of different components in different kinds of cells. The 

analysis of single neurons conducted by Olefirowicz et al. and Kennedy et al. 

showed the applicability of capillary electrophoresis to the analysis of individual 
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cells. Other investigations demonstrated the quantitative determination of 

multiple constituents in individual cells coupled with electrochemical detection 

modes. 

Recent work in this group centered around the determination of several 

components within single erythrocytes with both direct and indirect fluo­

rescence detection. The red blood cell is the smallest cell so far subjected to 

chemical analysis. The successful analysis of such a small entity demonstrated 

that laser-induced fluorescence (LIF) is by far the most sensitive approach for 

direct and indirect detection of intracellular components. The indirect detection 

method described earlier 18.21.^2 provided a general approach for the quantitation 

of intracellular ions normally with undetectable properties. This is accom­

plished without the tedious steps associated with derivatization. It also avoids 

the problems of incomplete reaction and of slow kinetics at low analyte 

concentrations. 

Lactate and pyruvate that exist in the red blood cell play an important 

role in the glycolysis process 23. The determination of the amounts of each in a 

single erythrocyte should provide some information about the carbohydrate 

metabolism, as these are products during the carbohydrate substrate conversion 

process. Lactate and pyruvate convert to each other via the following reaction 

cycle: 

LDH 

Lactate + NAD+ < > NADH + Pyruvate 

This cycle also brings about the conversion of NADH to NAD+, and is catalyzed 

by LDH. The determination of pyruvate and lactate can further be correlated to 

the concentrations of NADH and NAD indirectly. Also it is possible to relate 
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these to the activity of LDH. Both lactate and pyruvate do not contain any 

physical properties amenable for sensitive detection. They are also not easily 

derivatized. 

In the present work, the use of fluorescein as the fluorophore for the indi­

rect detection of anions was evaluated. It was then used as the background ion 

for the determination of pyruvate and lactate in single human red blood cells. 

The variations in the amounts of pyruvate and lactate from cell to cell were 

depicted. 

EXPERIMENTAL SECTION 

Instrumentation. The CE system used in this work is similar to that de­

scribed before 21.22 por single cell analysis, a 70 cm long, 55 cm to detector, 

14 |im I.D. and 350 jim O.D. fused-silica capillary (Polymicro Technologies, 

Phoenix, AZ, USA) and a high voltage power supply (Spellman Electronics Corp., 

Plainview, NY, USA) were used throughout the study. The running voltage was 

kept at 25 kV. An on-capillary detection window was created by burning off a 

short section of the polyimide coating. The cell injection end was conditioned by 

removing a 2-mm section of the poljdmide coating for visual monitoring. About 

3.2 mW of 330 nm laser light (after separation from the 350 and 360 nm lines) 

from an argon ion laser (Model Innova 90, Coherent, Palo Alto, CA, USA) was 

used for excitation. The laser beam was focused onto the detection region by a 1 

cm focal length lens and the emitted fluorescence was collected using a 20X 

microscope objective lens at an angle of 90° to the laser beam. A spatial filter 

and a 400 nm long-pass filter plus an interference filter at 516 nm were used to 

eliminate the scattered light before imaging onto the photomultiplier tube 
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(PMT). The current produced was converted to voltage by an electrometer. 

Then, via a 24-bit A/D conversion interface (ChromPerfect Direct, Justice 

Innovations, Palo Alto, CA, USA), data was collected and stored on an IBM 

compatible PC/AT computer. 

For evaluation of the fluorescein system, a modified setup was also used. 

The major change is that a visible argon ion laser (Model 2211-lOSL, Cyonics, 

Uniphase, San Jose, CA, USA) was used. The laser beam was not focused in 

order to simplify optical alignment. Basically, the original laser beam with a 

diameter of about 1.5 mm directly irradiates the capillary at the detection 

window. Since indirect detection involves a fair background concentration of a 

fluorophore, the signal level is adequate even though only a few percent of the 

unfocused laser intensity is used. 

Ceil Preparation and Injection. Human erythrocytes were isolated 

from the fresh plasma of a healthy adult male. Usually 5 mL of plasma was 

obtained, with heparin and EDTA added to protect the red blood cells from 

coagulating during storage at 4 °C in a refrigerator for as long as 4 days. Before 

detection of the anions, the red blood cells were separated from the serum by 

centrifuging, and also were washed by a process similar to that described in Ref. 

18. A different wash solution (8% glucose, 100 p-M fluorescein disodium salt, 2-

hydrate with no further adjustments in pH) was used. Multiple washings were 

performed so that the cells were free from the extracellular ions. 

The cells were suspended in the wash solution at a concentration of about 

0.1% by volume. A 50-|iL droplet of cell suspension was mixed with an identical 

volume of running buffer already deposited on the glass microscope slide. An 

individual red blood cell was selected for injection by manually guiding the 
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capillary orifice close to the cell of interest with the help of the microscope and a 

3-dimensional micromanipulator. A vacuum pulse produced by pulling a syringe 

connected to the ground end of the airtight buffer vial was applied to draw the 

cell into the capillary. The whole process was clearly monitored and easily 

controlled under lOOX magnification. It is easy to push out any air bubbles from 

the capillary that are inadvertently introduced during the injection process by 

squeezing on the piston of the syringe. 

In order to move the capillary orifice to the cell as close as possible, the in­

jection end was etched to form a tip of about 50 jim O.D. with HF using the 

similar procedure as reported in Ref. 17. By using the etched capillary, we can 

decrease the injected amount of the suspension solution, which was the main 

interfering component in this detection scheme. Injection of large amounts of 

suspension solution resulted in instability of the baseline. After a red blood cell 

was drawn into the capillary, the capillary was immediately moved back into the 

vial containing the running buffer. After 30 s to allow lysing, the separation 

begins. In the running buffer, erji;hrocytes typically lysed in a time shorter than 

1 s. The fast lysis is desirable for the determination of intracellular components 

without extra manipulation. The 30 s waiting period allows the running buffer 

to mix with the suspension solution and to reach the cell. 

Injection of Standard Samples. The standard samples were injected 

hydrodjTiamically at a height of 20 cm relative to the ground end. The hydro-

d3rnamic injection mode is comparable and consistent with the cell injection pro­

cess. Also, it is not biased for ions with different mobilities and the injected 

amount is easier to control based on the Poiseuille equation. 
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Reagents. Sodium pyruvate was obtained from Fluka Chemica, Switzer­

land. Sodium lactate was purchased from Sigma (St. Louis, MO, USA). Fluores­

cein disodium salt, 2-hydrate (C2oHioNa205.2H20, MW 412.3) was purchased 

from Eastman Kodak (Rochester, NY, USA). Other chemicals were obtained 

from Fisher Chemical (Fair Lawn, NJ, USA). 

Solutions. Running buffer was made with 1% glucose (W), 100 |iM 

fluorescein disodium salt, 2-hydrate, and 500 jiM Tris with pH 8.5 without 

further adjustment. The standards were dissolved in the running buffer. For 

the evaluation of fluorescein, different running buffer solutions were used as 

described below. All solutions were prepared in deionized water and were 

filtered with a 0.22 |J.m filter before using. 

RESULTS AND DISCUSSION 

Evaluation of Fluorescein Performance. Since fluorescein is a highly 

efficient fluorophore, we expect that even at low concentration a stable baseline 

can still be obtained for small capillaries. For a new bare capillary and buffer 

solutions without CTAB, a positive system peak comes out very early at the 

running conditions tested. After that the baseline becomes quite stable and 

clean. When using a DB-1 capillary (J&W Scientific, Folsom, CA, USA) the 

system peak shows up much later, as the capillary coating and the low concen­

tration of CTAB (20 }iM) lead to a slow electroosmotic (EO) flow rate. The 

system is also quite stable and clean. The relationship between anion migration 

and EO flow is different for these two conditions. In first case, the anions swim 

upstream. The EO flow rate is greater than the electrophoretic rate so that the 

anions are carried to the grounded buffer vial. The more mobile anions will 
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come out later. However, for the second case, the capillary walls are positively 

charged, leading to EO flow and anion migration in the same direction. The 

more mobile anions will come out earlier. Both systems are suitable for the 

detection of common anions. 

Fig. 1 shows that 8 anions were nicely separated, except that nitrate and 

iodide coeluted. Corresponding concentrations and migration times are listed in 

Table 1. A dynamic reserve of > 400 is easily obtained when using fluorescein as 

the fluorophore at this low concentration. This is a promising feature for the de­

tection of anions. However, the LOD in indirect detection is not simply deter­

mined by the concentration of the background fluorophore and the dynamic re­

serve. The displacement ratio is also an important factor that affects the LOD. 

The problems with fluorescein are the relatively large MW and the double 

charge at pH 8.5, which may degrade the LOD. From the pjrruvate peak area 

and peak height, the estimated displacement ratio is 0.2 to 0.08, which is depen­

dent on the buffer components and the capillary size. The buffer components 

can introduce additional interaction between the analytes and the fluorescein 

ions. The effect of capillary size is not clear. Generally, simpler systems (using 

only 100 mM fluorescein as the running buffer) and smaller capillaries give 

larger displacement ratios. 

Table 2 lists the LOD for different experimental conditions. Certain 

conditions provide improvements in LOD compared to that reported previously 

1-22. Even though different anions were tested, the LODs are comparable be­

cause the MW are similar and the charge is the same. The lowest LOD was ob­

tained for electromigration injection. The lowest LOD was obtained for 

electromigration injection. A possible reason is that the total injection period is 
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Figure 1. Electropherogram of anion separation. Concentrations and migra­

tion times are listed in Table 1. 50-)im DB-1 capillary, 76 cm long 

and 44 cm to detector. Running voltage: 30 kV. Injection: 30 kV, 

0.5 s. Buffer: 100 |iM fluorescein and 20 |J.M CTAB. 
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much shorter than hydrodynamic injection when injecting the same volume of 

sample. Therefore the baseline disturbance is smaller in magnitude. However, 

for electromigration injection, the separation is not as good as that obtained for 

hydrodynamic injection. The LODs listed in Table 2 confirm the applicability to 

the detection of pyruvate and lactate in single red blood cells. 

Table 1. Concentrations and migration times for the separation shown in Fig. 1 

No. Anion Concentration Migration Time 
|lM S 

1 Nitrate 47.2 191.6 

Iodide 5.1 91.6 

2 Chlorate 17.8 210.1 

3 P3rruvate 34.5 371.6 

4 Acetate 23.3 385.4 

5 Benzoate 20.1 460.4 

6 Lactate 18.8 533.1 

7 Glutamate 16.3 698.1 
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Table 2. Absolute LOD dO'^® moles) under different operating conditions. 

1 2 3 4 5 6 

Pyruvate 4.49 1.58 1.49 0.68 0.32 1.69 

Lactate * 1.35 1.23 0.88 0.21 1.05 

Glutamate 7.51 •i' 1.36 0.34 1.40 

*not measured 

Conditions: 

1. Buffer: 100 jiM fluorescein and 20 fiM CTAB, pH 6.3. 

Capillary: DB-1, 350 |Lim O.D., 50 |im I.D.; length 76 cm and 44 cm to the 

detector. 

ETV: 30 kV. Injection: 30 kV, 0.5 s. Laser: unfocused 488 nm beam. 

Sample was dissolved in running buffer. 

2. Buffer: 100 |J.M fluorescein, 1% glucose and 500 }i.M Tris, pH 8.5. 

Capillary: bare fused-silica, 362 |im O.D., 14 |j,m I.D., length 70 cm and 

55 cm to the detector. 

HV: 25 kV. Injection: gravity 20 cm, 30 s. Laser: focused 330 nm beam. 

Sample was dissolved in 8% glucose and 100 |i,M fluorescein. 

3. Same as 2 except that the sample was dissolved in the running buffer. 

4. Same as 3 except that the running buffer did not contain glucose. 

5. Same as 4 except that injection was conducted by electromigration at 25 kV, 

0.5 s. 

6. Buffer: 250 |iM sodium salicylate, pH 6.0. Other conditions were the same 

as in 4. 
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Determination of Intracellular Pyruvate and Lactate in a Single 

Erythrocyte. Bare fused-silica capillaries (14 |.im I.D.) were used because this 

size is suitable for injection of cells with a diameter of 8-9 [Xm and a volume of 

53-87 femtoliters 2-1. There is only a small dilution effect after the lysis of the 

cell and optical alignment is not very tricky. Also, it allows a reasonable 

vacuum injection time (< 15 s) for introducing one cell into the capillary without 

drawing in too much extracellular fluid. The separation efficiency and detection 

sensitivity are still well maintained for both fluorescence detection and 

electrochemical detection The results shown in Table 2 provide support for 

selecting small bore capillaries for single-cell studies. 

Laser-induced fluorescence (LIF) provides the high sensitivity needed 

for small amounts of sample when the analyte possesses natural fluorescence. 

Unfortunately, most ionic components existing within a single erythrocyte do not 

have appreciable natural fluorescence except proteins, DNA and some amino 

acids. In-vivo derivatization is one of the possibilities for detecting certain 

compounds. Nevertheless, the tedious process and possible contamination 

during treatment are formidable challenges for applying that to such a tiny or­

ganism as the red blood cell. Some kind of a specific biosensor is an alternative. 

The high selectivity however limits its applicability for multiple component 

analysis. The indirect detection approach proves to be practical for 

determining the ionic analytes inside a cell. Even though it is far from being a 

perfect method, especially near the LOD due to instability of the baseline and 

system peak interference, the advantages of easy operation and suitability for 

monitoring compounds without specific functionality make this a unique 

technique for the analysis of single cells. 
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We might expect that many peaks would be present in the electrophero-

grams if the amounts of tjrpical anions within the red blood cell were higher than 

the LOD obtained in this work (Table 2). In actual fact most of them are at 

concentrations well below the LOD. The potentially troublesome components 

were proteins if they could displace enough fluorescein to produce peaks. At the 

pH and the low concentration of buffer used in this system, proteins interact 

strongly with the capillary wall and adsorb there. Also, generally the large 

biomolecules have poor displacement ratios leading to poor LOD 28. This is in 

contrast to operation at pH 10 with native fluorescence detection Actually, 

for the low absolute amounts of proteins in a cell, they could not produce 

significant interferences except for changing the EO flow rate due to adsorption. 

According to Table 2, only pyruvate (-1.29 femtomoles) and lactate (-0.78 

femtomoles) are at detectable levels in a single erythrocyte. 

Preliminary results showed that the high concentration of glucose used in 

the cell suspension solution caused an unstable baseline. The disturbance was 

so strong that no recognizable peak was obtained. To reduce the disturbance, 

1% glucose was added into the running buffer. Also, the capillary was 

equilibrated for 24 hours at the same HV before the analysis of single cells. The 

system became quite stable and could tolerate the injection of a high 

concentration of glucose. Furthermore, the mixing of an equivolume of running 

buffer with the cell suspension on the microscope slide before injection of a cell 

decreased the actual concentration of glucose to about 4% and reduced the 

disturbance. Examination under a microscope shows that red blood cells in 4% 

glucose can last up to 6 hours with no obvious hemolysis. Naturally, leaving 

cells in the glucose solution for a long time can promote the leakage of 



www.manaraa.com

36 

intracellular components. Our experiments are performed immediately after 

washing of the cells to protect pyruvate and lactate from leaking out. 

Figure 2 shows the electropherograms for injection of the running buffer 

(A), cell suspension solution (B), standards (C), a single cell (D) and a lysed-cell 

suspension (E). The clean background in (A) and (B) demonstrates a desirable 

condition for the detection of anions. Considering the detectable components in 

the cell as well as the consistency of migration times for the standard samples 

and the cell, one can attribute the two peaks in (D) and (E) to lactate and 

P5rruvate respectively. The stability of the baseline for single cell analysis is 

dependent on the amount (volume) of suspension solution drawn into the 

capillary. Sometimes a system peak appeared at the position of the lactate peak, 

which affects the precise quantitation of intracellular lactate. Therefore, 

minimizing the volume of the suspension solution injected is crucial for the 

determination of lactate. With the HF-etched fine tip, the injection orifice can be 

more easily moved to approach the cell of interest without pushing it away. The 

other approaches used for controlling the excess injection volume are to use a 

slightly more concentrated cell suspension and to apply the vacuum pulse 

gradually after the orifice is near the selected cell. 

Nevertheless, the carefully manipulated injection process is still not good 

enough to make every run informative. Some other factors can make the system 

unstable, e.g. shaking when moving the capillary in and out of the buffer vial, 

etc. Several electropherograms for cell separation are shown in Figure 3. 

Variations among these trials are presumably due to the individual cell volumes 
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Figxire 2. Electropherograms for the analysis of the running buffer (A), cell 

suspension solution (B), standards (C), a single red blood cell (D) 

and lysed-cell suspension (E). Peaks 1 and 2 refer to lactate and 

pyruvate respectively. 
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Figure 3. Electropherogi'ams for the analysis of individual red blood cells. 

Numbers (6, 10, 11, 23) refer to chronological order of the experiments. 

Peaks 1 and 2 refer to lactate and pyruvate, respectively. 
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and actual compositional differences. Runs #11 and #23 show other detectable 

components, which might denote unusual cells. According to the analysis of 

whole blood extracts the chemical composition of normal cells are drama­

tically different from those of abnormal cells. The common feature for these 

runs are the peaks for pyruvate and lactate. 

In total, 32 cells were analyzed consecutively. Due to unpredictable 

disturbances, 5 runs were affected by serious baseline jumps and shifts. 

Therefore, those 5 data files were eliminated from further processing to quantify 

the individual components. A significant feature is that the individual cells are 

very different from each other with regard to the contents of pyruvate and 

lactate, as shown in Fig. 4. This is consistent with earlier observations 18.19. 

One of the reasons for the large variability among these results may be 

that the red blood cells have significant differences in content, since volume and 

age variations can lead to compositional differences. In fact, lactate and 

pyruvate reflect enzyme activity that can be very different among cells. Another 

possibility is associated with the stability and accuracy of the indirect detection 

Owing to the low concentration of fluorescein used here, the reproducibility is 

not very good. Up to 40% deviation is observed sometimes, while t5T3ical 

deviations are below 20%. Another possible cause is the stability of the column 

after several hours of running. From the result of standard samples examined 

after 32 cell analyses, the peak area and height of 4 injections yielded a 20% 

deviation compared to the same standard samples injected before the analysis of 

cells. The deviation was still within the individual precisions for standard 

injections. This indicates that the low concentration buffer and the adsorbed 

material do not damage the capillary. Also, no obvious decreasing or increasing 
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Figure 4. Distributions of lactate and pyruvate in individual human red blood 

cells over a series of 27 trials, u refers to the amount in individual 

cells. A , + and 0 at the left of each frame denote the literature 

value, average for all 27 cells, and the amount measured from a 

lysed-cell suspension, respectively. 
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trend was observed in Fig. 4. The average intracellular contents of pyruvate and 

lactate are found to be 2.1 femtomoles and 1.3 femtomoles respectively (a ratio of 

1.6 for pyruvate to lactate). These values are different from the literature values 

of 1.29 and 0.78 femtomoles (a ratio of 1.6) for pyruvate and lactate respectively. 

The ratio of pyruvate to lactate for each cell is shown in Fig. 5. A considerable 

variation was observed even though this is a cell-size independent quantity. 

The migration time is always a useful marker for identifying the analyte 

in capillary electrophoresis. The migration times for pyruvate and lactate are 

shown in Fig. 6 for each cell injection. We note there is no significant change 

with run number except for the first several runs, where there is a change of up 

to 20%. A longer equilibration time between runs leads to a smaller change in 

the migration times. We conclude that the change in migration time is mainly 

caused by changing ^ potential due to the injection of cells, because the running 

voltage and the buffer ionic strength are kept constant for the entire set of runs. 

Fortunately, the system peak can be used as an internal standard for migration 

time calibration and for identifying the sample peaks. The ratios of the 

migration times for pyruvate and lactate are almost constant, as shown in Fig. 

7, with an average of 1.072 and a standard deviation of only 3%. For standard 

samples, the ratio is 1.078. This provides positive evidence for identification of 

the two peaks as pyruvate and lactate. 
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Figure 5. Ratio of pyruvate to lactate in individual red blood cells for 27 

trials. 



www.manaraa.com

46 

Cell Number 

Figure 6. Changes in migration times over the entire experiment. 

•= lactate; + = pyruvate. 
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Figure 7. Ratios of migration times for pyruvate to lactate for 27 runs. 
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CONCLUSIONS 

We have demonstrated the advantages of using fluorescein as the back­

ground ion for the indirect detection of anions. The system shows good stabiHty 

at 100 |iM fluorescein. LCD of 20 attomoles for lactate was achieved. For the 

best performance in indirect detection, good equilibration is necessary before 

running the samples. Fluorescein can also be excited by visible laser sources, 

paving the way for a more compact and a less costly instrument. 

The separation and determination of intracellular anions show an impor­

tant application of this detection approach in the study of mammalian cells. 

Variations observed from cell to cell should be useful in understanding the 

biological functions of different components in cells, and perhaps can help to 

determine whether cells are normal. This scheme might allow the deter­

mination of NADH, NAD or LDH by measuring the amounts of pyruvate and 

lactate, because these are the products of catalysis by those enzymes. This kind 

of correlation requires very accurate determinations of pyruvate and lactate. 

Further improvements in stability and reproducibility for this system would 

thus be necessary to reach this goal. 
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VARIABILITY OF INTRACELLULAR 

LACTATE DEHYDROGENASE IS0ENZY]\,1ES 

IN SINGLE HUMAN ERYTHROCYTES 

A paper published in the Analytical Chemistry^ 

Qifeng Xue and Edward S. Yeung 

ABSTRACT 

Trace amounts of enzymes within single human erythrocytes can be 

quantified by a combination of on-column reaction and capillary electrophoresis. 

A detection limit of 1.3 x lO-^i moles of LDH was achieved with laser-induced 

fluorescence by monitoring the product of the enzyme catalyzed reaction between 

lactate and NAD+. Single erythrocyte analysis clearly isolates the major forms 

of LDH. The variation of total LDH activity in a population of cells from a single 

individual is large but the relative activities of the isoenzymes LDH-1 and LDH-

2 are fairly constant. This can be explained by the distribution of cell age in the 

population. A lower enzjone activity is indicative of senescence. The efficient 

separation of different LDH forms and the high detection sensitivity opens up 

the possibilitji' of multiple-enzyme assays with a single mammalian cell. 

1 Reprinted with permission from Analytical Chemistryl994, 66, 1175-1178. 

Copyright © 1994 by the American Chemical Society. 
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BRIEF 

Laser-based fluorescence enzyme assay is developed to detect moles 

of lactate dehydrogenase, so that intracellular levels in single erythrocytes can 

be quantified. 

INTRODUCTION 

Besides being intimately related to glycolysis, lactate dehydrogenase 

(LDH) activity of blood can be used for the diagnosis of liver disease, myocardial 

infarction, etc. ^ The determination of LDH in serum is possible with different 

methods in the clinical laboratory. The average LDH activity in er3^hrocytes 

has also been measured in hemolysate ̂  . The quantification of intracellular 

LDH activity in individual cells should result in unique information about chem­

ical and biological functions, and help to elucidate whether the cell is in a 

normal state. Because human LDH is an isoenzyme with five different forms 

with activities related to metastatic cancers ® and to cell age their separation 

and individual determination may have broad implications. 

Capillary electrophoresis (CE) has recently emerged as a powerful separa­

tion technique Sub-nanoliter sample volume is an inherent feature of small 

(5-20 pm i.d.) capillaries 12.13. CE has already been applied to single-cell studies. 

Larger cells such as snail neurons or adrenal medullary cells have been probed 

in conjunction with electrochemical detection . Recent progress in single 

erythrocyte analysis proved that laser-induced fluorescence (LIF) coupled to CE 

is suitable for the determination of intracellular Na+ and K+ 20^ glutathione^o, 

lactate and pyruvate 21, and the major proteins 22,23 However, the components 

studied so far are those at relatively high concentrations inside the cell. Most of 
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the several thousand other components in erythrocytes are still inaccessible by 

the above schemes. In particular, enzymes exist in individual cells in amounts 

well below attomole levels. Their analysis and characterization in single mam­

malian cells remain a challenge. 

Usually, determining the activity of an enzyme is more important than 

determining its amount. Hence, enzymes are commonly quantified by their 

biological activity under selected conditions. As a catalyst, the enzyme is not 

consumed during reaction, which then provides amplification of the signal with 

prolonged reaction time. In recent reports 24-26 ^ Regnier and co-workers utilized 

capillary electrophoresis to perform enzyme assays. We have modified their 

approach to allow sensitive detection of LDH in single erythrocytes by using 

LIF. 

EXPERIMENTAL SECTION 

Red blood cells were obtained fi^om a healthy adult donor. Pre-added hep­

arin and EDTA kept the blood from coagulating for several days at a 

temperature of 0 to 4°C. Before analysis, the cells were washed 8 times with 135 

mM NaCl and 20 mM phosphate buffer at pH 7.4, following the same procedure 

as described previously ^3. The washed cells can be used for several hours 

afterwards. Cells were suspended in the same wash solution just before 

injection so that leakage can be neglected. Single cell injection into the 

capillary 20.21 was monitored under a lOOX microscope, and was accomplished by 

applying a vacuum pulse to the distal end of the capillary with the help of a 

syringe connected to an air-tight buffer vial. 
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The experimental set-up is almost the same as before except that a 380 

nm cutoff filter and a 480 nm interference filter were used. To limit dilution of 

the intracellular components, 20 pm i.d. capillaries were used for the separation. 

Total capillary length is 65 cm and the distance to the detection window is 50 

cm. 

Detection was based on the large difference in fluorescence efficiency 

between one of the products, NADH, and all other components in the solution. 

NADH absorbs light with a maximum at 340 nm, and fluoresces with a maxi­

mum at 480 nm. Detection at attomole levels can be easily achieved. Also, this 

enzymatic reaction is quite fast, with a turn-over number of about 1000 per s 

The lactate to pyruvate conversion, in the presence of NAD+, was used to 

measure LDH activity, as opposed to the normal function of LDH to convert 

pyruvate to lactate, since NAD"'" gives a low fluorescence background that is 

critical for measuring small signals. 

The buffer contains 5 mM lactate, 5 mM NAD+ and 30 mM phosphate at a 

pH of 7.3. From published data at a pH of 7.2 to 7.6 LDH has the highest 

activity. With these concentrations of substrates, the LDH catalyzed reaction is 

expected to be pseudo-first order, since the LDH activity is only about 3 nlU 

in a single erythrocyte. Further, contributions from intracellular lactate, 

pyruvate, NAD+, and NADH can be neglected. At a given temperature and 

reaction time, the NADH amount formed is thus directly proportional to the 

LDH activity. We used a 4-step procedure to measure the LDH activity. First, 

the standard solution or a single erythrocyte was injected into the capillary. 

Second, 30 kV was applied for 1 min to separate the different LDH forms into 

different zones based on their electrophoretic mobilities and to allow them to 



www.manaraa.com

55 

migrate into the regions containing the substrates. The red blood cells are easily 

lysed in the running buffer because of the low ionic strength, requiring only 1 to 

2 s of contact as confirmed visually under the microscope. Third, the high 

voltage was turned off for 2 min. During this incubation period, NADH is accu­

mulated in the different LDH zones due to their enzymatic activities. Finally, 

high voltage was reapplied to elute the components past the detection window. 

For the standard solutions, hydrodynamic injection was used and the injected 

amounts were quantified with the Poiseuille equation. The enzymatic reaction 

was carried out at room temperature (21°C). No effort was made to measure the 

internal temperature of the capillary, since the small i.d. capillary is not 

expected to generate substantial Joule heating. 

RESULTS AND DISCUSSION 

The electropherogram for LDH-1 standard is shown in Fig. 1. The step­

like increase in background around 7 min is caused by the continuous formation 

of NADH when LDH moves along the capillary, as discussed earlier NADH 

moves slower than LDH under these conditions, leading to an accumulation 

peak at the trailing edge of the increased background 25. After the accumulated 

NADH is eluted, the baseline returns to the original level, which confirms that 

LDH does not adsorb significantly on the capillary walls. A limit of detection 

(LOD) of 1.3 X 10'21 moles or 58 pIU LDH was achieved. LDH-1 standards 

exliibit a linear response from 0.3 to 30 nlU with r^ = 0.995 while NADH 

standards exhibit a linear response from 3 x 10"'^ M to 7.5 x lO"^ M with r^ = 

0.9999. Either standard can be used to quantify the LDH activity, which is 

usually defined with the units of mmoles NADH consumed per min at a certain 
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Figure 1. Electropherogram of LDH-1 standard (29.5 nlU). 
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temperature. Here, the activity for catalyzing the reverse reaction is being 

measured. 

The mixture of LDH-1, LDH-2 and LDH-3 in both a standard solution and 

a lysed-cell sample was nicely separated. The same features are clearly present 

in both Fig. 2a and b. This migration order was established by running the 

individual components separately, and is consistent with slab gel electrophoresis 

in which LDH-1 moves fastest towards the anode Here, each component is 

brought to the cathode by electroosmotic flow even though the electrophoretic 

motion of each is towards the anode. The electropherograms of LDHs are shown 

in Fig. 3 for different separation times before incubation. The spacings between 

the isoenzymes become larger with increasing separation time. Also, a fourth 

peak is recognizable for runs with longer separation times, which probably corre­

sponds to LDH-4 or LDH-5. We are not able to positively identify that peak 

since standards were not available. 

The results of analyses of single cells are shown in Fig. 4. Typically, 2 

or 3 distinct peaks are recorded for an individual erythrocyte. As stated 

before LDH-1 (30-40%) and LDH-2 (40-45%) are the major forms of LDH in 

red blood cells, and LDH-3 (14-16%) is present at a relatively low amount. It is 

reasonable that not every electropherogram clearly shows LDH-3 as a well 

defined peak, as in Fig. 4a. For 3 of the total of 36 cells examined, a fourth peak 

is observed (Fig. 4d and e). This extra feature may indicate the occasional 

presence of a high LDH-4 or LDH-5 content compared to normal cells, which 

typically contain these isoenzymes at 3-5% and 2% respectively. Four runs did 

not result in the clean separation of LDHs, even though the total accumulated 

NADH amount is quite high. A possible reason is that the injected cell did not 



www.manaraa.com

Figure 2. Electropherograms of a LDH standard mixture (a) and LDH in 

lysed red blood cells (b). The standard solution contains 12.3 nlU 

LDH-1 (1), 6.7 nlU LDH-2 (2) and 10.2 nlU LDH-3 (3). The amount 

of lysed cell injected is equivalent to about 9 cells. 
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Figure 3. Electropherograms of LDHs in lysed red blood cells with different 

separation times before incubation, (a) 1 min, (b) 2 min, and 

(c) 3 min. Peak 4 is probably LDH-4 and/or LDH-5. 



www.manaraa.com

RELATIVE FLUORESCENCE 

o 

to - cr 

H 
>—( 

s 
m 

to 00 -

t-o 

o 



www.manaraa.com

Figure 4. Electropherograms of LDHs in several individual human 

erythrocytes, (a) through (e), 2 min incubation and (D 5 min 

incubation and plotted with a 0.4 scale factor. The migration times 

have been normalized with respect to that of LDH-1 in each case. 
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lyse immediately after application of high voltage. Rather, the cell was lysed 

towards the end of the separation period, and the LDHs were left unseparated. 

That will be the case if too much of the cell suspension liquid is drawn into the 

capillary, protecting the cell from lysis. This ambiguity can be avoided by 

pushing on the syringe piston afterwards to backflush most of the cell 

suspension liquid out of the capillary. This operation usually does not remove 

the injected cell as it can adsorb on the capillary wall. 

A longer on-capillary incubation time was also attempted, as shown in 

Fig. 4f. The peaks become higher and broader. A larger peak is desirable for 

measuring low enzyme activities. However, a broader peak will compromise the 

separation. We have shown that large biomolecules do not diffuse signifi­

cantly under similar conditions even after one hour. Hence, broadening was 

not due to diffusion of LDH but was caused by diffusion of the relatively small 

molecule, NADH (MW = 709.4). The combined results shown in Fig. 3 and 4f 

indicate that if a longer reaction time is needed for sensitive detection, the sep­

aration time for the enzymes before incubation should be increased accordingly 

to maintain good spacing between the individual product peaks. 

During the series of cell analyses, the migration times changed from run 

to run. One of the probable causes is the vacuum pulse used for injection. 

Because of our enclosed system, residual hydrodynamic flow during separation 

will lead to changes in migration time. This affects all the components to the 

same extent, such that the migration time difference between LDH-1 and LDH-2 

will be a constant. We found that this difference is 0.37 ± 0.09 min and that the 

ratio of the two migration times varied by only ±1% over the entire data set. 

This confirms our assumption that residual hydrodynamic flow is primarily 
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responsible for these variations. Naturally, other effects can also be involved. 

Usually, proteins and phospholipids have serious adsorption interactions around 

pH 7. Adsorption on the capillary wall changes the electroosmotic flow rate, 

which will cause the migration time to change. However, the small total 

amounts of material injected, even for 36 runs, should only have a minor 

cumulative effect on the net charges on the capillary walls. We have shown 

previously that the migration time for hemoglobin changed by only 20% over a 

40-cell experiment 23. In the experiments here, selectivity is provided by the 

enzyme reaction, and only the separation (relative positions) between 

isoenzymes is important. 

The absolute amounts of LDH in individual erythrocytes were quantified 

for the 36 cell analyses. Calibration based on LDH standards resulted in a very 

high calculated LDH activity in the erythrocytes, about 10 times higher than the 

literature value. The reasons for the unusual result are several folds. During 

transportation and storage, some LDH activity might have been lost, as LDH is 

highly susceptible to degradation. On the other hand, when the cell is lysed, its 

LDH is fresh and is completely injected. It is therefore not surprising that the 

same amount of LDH can show very different activities for the standard 

solutions and for the intracellular fluid. Another factor is that the manufacturer 

uses different conditions to calibrate LDH activity. The conditions are 

significantly different from those used in this work (buffer components, pH, 

temperature, and a reversed direction of enzyme reaction). A third factor is the 

injection process. The amount of standard solution injected is calculated from 

the concentration and the injection volume. It is known that proteins in the 

solution can be lost through adsorption, resulting in the injection of a lower 
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effective amount. Any of these three factors will lead to a higher calculated 

activity in single erythrocytes. Consequently, NADH is a more reliable standard 

for calculating the LDH activity in single cells. The activities thus derived for 

individual erythrocytes are shown in Fig. 5, with different bars representing the 

different LDH forms. According to these 36 runs, the average total LDH activity 

is 1.36 ± 0.7 nlU in a single cell, and is 1.26 nlU/cell as determined from a 

sample of lysed cells (Fig. 2 and 3). Both are lower than the literature value of 

2.9-3.5 nlU/cell The deviation is expected, and is consistent with a factor of 2 

decrease in reaction rate for every 10°C decrease in temperature. 

The observed 10-fold variations in LDH between cells are quite large, but 

are consistent with our studies of other components in single erythrocytes 20,21.23 

Such variations cannot be entirely explained by changes in cell volume, which 

for human erythrocytes is less than 10% in an individual. The LDH activity has 

been reported to be related to cell aging with a declining trend for increased 

cell age. The older cells are less likely to be able to maintain enzymatic activity, 

as proteins are not replaced in erythrocytes once formed So, Fig. 5 reflects 

the age distribution of erythrocytes in our sample. The relationship between the 

individual amounts of LDH-1 and LDH-2 was also examined. The ratios for 

LDH-1 to LDH-2 for single cells, a volume-independent quantity, varied from 

0.39 to 1.64 (average = 0.93, 0 = 0.30). There is however a common trend for the 

LDH-1 and LDH-2 activities. A positive linear correlation exists, with a 

correlation coefficient of r^ = 0.64 for 31 cells. This further confirms the 

hypothesis of cell age, since both isoenzyme forms would degrade simultaneously 

with age. While total LDH activity serves as a good marker for age and 

certain diseases 1, the ability to quantify the individual isoenzymes, as 
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Figure 5. LDH activities in 36 individual erythrocytes. Light-shaded bars, LDH-1; solid bars, LDH-2; 

open bars, LDH-3; and heavy-shaded bars, LDH-4 and/or LDH-5. In cells #15, 18, 19 and 23, 

the peaks are not vi^ell resolved. The total activities in these 4 cases are thus equally divided 

between LDH-1 and LDH-2. Cell #31 was assayed with a 5 min incubation time and therefore 

gave a much larger response. These activities were multiplied by 0.4 before plotting. 
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demonstrated here, is important. An elevated LDH-5 level or a high 

LDH-4:LDH-2 ratio in serum and in tissues have been correlated with vari­

ous types of cancer. It will be most interesting to investigate the degree of 

heterogeneity in neoplastic cells or even benign tumor cells to establish chemical 

markers for early diagnosis. After all, chemical changes are likely to precede 

physical changes in the development of diseases. The ability to study individual 

cells is thus vital. 

In summary, we demonstrated a novel approach for rapid assay of ultra-

trace enzymes within an organism as small as a red blood cell (90 fL). The 

detection limit here is 800 molecules of LDH for 2 min incubation. It should be 

possible to detect other enzymes with higher turn-over numbers down to the 

single molecule level by incubating even longer times. A higher temperature 

(e.g., 37°C) will also increase the reaction rate and help the detection of even 

lower enzyme activities. Throughout this work, a 65-cm capillary was used for 

separation and detection to conveniently interface with the microscope for 

injecting single cells. Considering that the separation process only took one 

minute, a much shorter capillary could have been used to perform the assay. 

The present approach is also applicable to the quantification of multiple 

enzymes in single cells by introducing multiple substrates. One can rely on elec-

trophoretic separation of the enzymes before incubation or on spectroscopic 

or electrophoretic differences in the products for simultaneous determinations. 

Finally, since CE can be run simultaneously in thousands of capillaries 

screening a large number of cells in a reasonable time is feasible. 
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DIFFERENCES IN THE CHEMICAL REACTIVITY 

OF INDIVIDUAL iAIOLECULES OF AN ENZYME 

A paper to be published in Nature 

Qifeng Xue and Edward S. Yeung 

ABSTRACT 

Reactions of single lactate dehydrogenase isoenzyme-1 (LDH-1) molecules 

can be monitored by using laser-induced fluorescence. We can not only quantify 

molecular concentrations down to M of LDH-1, but also measure their 

reactivities. Large variations (±69%) in activity are found among the 79 

molecules studied. The activity for individual electrophoretically pure enzyme 

molecules can vary by up to a factor of four, and the activity for the same 

molecule remain unchanged over a two-hour period. We suggest that the origin 

of the activity difference may lie in the presence of several stable forms of the 

enzyme. 

INTRODUCTION 

While much recent attention is concentrated on the detection and physical 

characterization of single-molecules the chemical characterization of single 

molecules can provide unique insights, for example whether the individual 

reactivities in a population are identical. Further, the time scale over which any 

inhomogeneties persist can help elucidate structure-function relationships of the 
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active sites. In previous work enzymes were quantified at the zeptomole 

level via fluorescence microassay. Single enzyme molecules have also been de­

tected in 14-]am droplets dispersed in oil by fluorescence microscopy 

In this work, we show that reactions of single molecules can be monitored 

by filling a narrow (20-iam) capillary with very low concentrations (10"!'^ M) of 

electrophoretically pure lactate dehydrogenase (LDH-1), excess lactate, and 

nicotinamide adenine dinucleotide (NAD"^), and obsei-ving the discrete 

fluorescent zones of NADH that are formed together with pyruvate. Unexpect­

edly, large variations in activity are found among the molecules studied. We 

also demonstrate how to manipulate each molecule electrophoretically. From 

the products formed during two consecutive incubation periods, we monitor the 

reactivity for each LDH-1 molecule over a 2-hour period. 

EXPERIMENTAL 

The experimental set-up here was adapted from ref 12. At pH = 9.1, 

LDH-1 shows maximum activity for catalyzing lactate to pyruvate conversion, 

and NADH shows higher fluorescence efficiency compared to that at pH 7. By 

increasing the incubation temperature from 21 °C to 40 °C, the reaction rate is 

increased without denaturing the enzyme i''. NADH left in the capillary for 1 hr 

does not show serious axial broadening (diffusion coefficient D ~ 10'^ 

cm2 s"l), even though it will be well-mixed radially. So, we are able to increase 

the incubation period, relative to ref 12, from 2 min to 1 hr; this enhances the 

sensitivity of detection, as more NADH is produced per molecule of enzyme. In 

all. we have improved the previous^" detection limit for LDH-1 by a factor of 

1000. 
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To avoid contamination, all sample solutions were carefully filtered (0.22 

pm). A 7.6 X 10'® M enzyme solution was diluted in 3 steps such that only a few 

molecules existed in the capillary when it was filled. Before filling the capillary, 

the diluted enzyme solution (concentration is at the order of 10"!'^ M) is mixed 

well with the substrates of lactate and NAD+, with concentration 1 mM and 3 

mM for NAD"'" and lactate respectively. The substrate concentration is 

saturated comparing to the LDH-1 concentration, at which the reaction speed is 

only depending on the LDH-1 activity. The process for the filling capillary and 

incubation to accumulate NADH is shown in Figure 1. After one hour 

incubation, one zone of NADH molecules will be formed corresponding to each 

LDH-1 molecule. The activity of each of these molecules can be monitored 

individually by driving each product zone electrophoretically past an argon-ion 

laser beam (which excites a region of 10 mm in width). Each enzyme molecule is 

represented by a product zone of NADH, the concentration of which (typically 

containing ~2 x lO'^ molecules of NADH) is determined by the activity of enzyme 

molecule. Fluorescence from the NADH, at a wavelength of 460 nm, is 

monitored by a photomultiplier tube, via a 20X microscope objective lens. The 

intensity of fluorescence thereby provides an indication the enzyme's activity. 

RESULTS AND DISCUSSION 

The detection of single molecules is shown in Figure 2 for two different 

concentrations of LDH-1. When the capillary was filled with only the substrates 

immediately after an enzyme assay, incubation for the same period did not 

produce any recognizable peaks as shown in Figure 3. This shows that memory 
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1. Fill the cfipillary with mixture of LDH and substrates (NAD + lactate) 

» ® * * 'c?* t • o » *40 *c? » •P* **p** 
^ r 

LDH Snbsbaiea 

2. Incubate for Ihr to accumulate NADH 

I 
* 

* 4 ;cp:f: • • • 
• 5 * * 

¥ * 

NADH Zone 

Figure 1. Schematic diagram for the experimental process: fill the capillary 

with the mixture of substrates and LDH-1 enzymes, and then 

incubate 1 h. 
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Figure 2. (a). Detection of single LDH-1 molecules. A LDH-1 solution at 

7.6 X 10 M was incubated at 40 °C in a 20-vim capillary tube 

together with 1 mM NAD+, 3 mM lactate and 20 mM Tris (pH = 9.1) 

for 1 hour. Afterwards, fluorescence peaks at 460 nm were collected 

by a 20x microscope objective and recorded by a phototube as the 

individual NADH zones (containing roughly 2 x 10"^ molecules) 

created within the 70-cm section were electrophoretically driven at 

24 kV (11 cm/min) past a 50 mW argon-ion laser beam which forms a 

10 ijm spot at 305 nm. 

(b). All the conditions were the same as in (a) except that the LDH-1 

concentration was 1.5 x lO-^® M. 
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Figure 2 (continued) 
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Figure 3. Blank experiment: fill the capillary with substrates only, then 

incubate at the same conditions as used for Figure 2. 
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effects (adsorption) and other artifacts are neghgible, and proves the peaks 

observed in Figure 2 are really associated with LDH-1 molecules. The numbers 

of LDH-1 molecules that exist in the capillary (290 nL volume) are predicted to 

be 15 and 30, respectively, for the concentrations of 7.6x10"!'^ M and 1.5xl0"l® 

M. The average numbers of peaks found were 8 ± 2 and 13 ± 1 (10 separate 

experiments) respectively, both less than calculated but in a 1:2 ratio. This is 

partly due to difficulties in preparing very dilute solutions precisely. 

Furthermore, by weight, the commercial enzyme preparation is not free of in­

active molecules or other proteins. The individual peak areas (average = 343 

units), which are independent of axial diffusion, are also consistent with 

experiments performed at high LDH-1 concentrations when extrapolated to 

single molecules (308 units). 

The widths of the individual peaks in Figure 2a are nearly identical, as 

would be expected from the time available for axial diffusion. The feature at 2.4 

min is unusually broad, indicating possible overlap of two product zones. The 

probability that any zone is due to two enzyme molecules residing in the exact 

region is given by the ratio between the zone length and the capillary length, 

which is about 1/30 here. For the observed 79 molecules, the relative activities 

were quantified as shown in Figure 4. Even though most of the individual 

molecules have the similar activity, we did observe several molecules have much 

higher activity as indicated by the NADH fluorescence intensity. We would 

predict that around 3 in the set of 79 are double-molecule zones. In Figure 5 of 

the single molecule reactivity histogram, there are indeed three peaks (> 1000 

units) that are much larger than the others. Unfortunately, these cannot be 

independently verified as double-molecule zones. The relative standard 
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Figure 4. Relative reactivities of the obsei'ved single LDH-1 molecules. The 

background-normalized peak area in Figxii'e 2 is proportional to the 

activity of individual LDH-1 molecules, since the presence of excess 

substrates guarantees a pseudo-first-order reaction. 
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Figure 5. Histogram of single-molecule reactivities for the studied 79 molecules 

in Figure 4. 
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deviation (RSD) of the areas is 69% for 79 clearly isolated peaks. If the 3 

questionable peaks are excluded, the RSD becomes 46%. The revised average 

area (306 units) agrees even better with the extrapolated value. The RSD for 

areas in single runs ranged from 32% to 72%, showing that the variations are 

characteristic of individual molecular properties rather than differences in 

reaction conditions. About 2 x 10^ NADH molecules are produced in each zone, 

so fluctuations in substrate concentration around each molecule cannot be 

responsible for these variations. 

It should be noted that we have actually determined the concentration of 

molecules in a solution at M, since the total count and the total volume are 

known. The precision is limited by molecule-counting statistics, and can be 

improved by using longer capillaries. Previous reports involving single-molecule 

detection are based on samples at 10'14 M or higher concentrations. Further­

more, the molecules here need not be fluorescent or pretreated in any way, since 

the product of a specific reaction is monitored. 

We can monitor the activity of individual molecules as a function of time, 

by electrophoretically separating each LDH-1 molecule from its first NADH 

product zone, then incubating for another hour, and finally measuring the 

fluorescence from the two product zones. Such observations are depicted in 

Figure 6. Several pairs of peaks were observed for each analysis. The temporal 

separation between the peaks in each pair ranged from 0.12 to 0.15 min, 

comparable to the 0.14 min predicted from standards of LDH-1 and NADH. The 

fact that a second peak is seen at all indicates that our observations are indeed 

due to enzjmie reactions and not impurities, and that adsorption at the capillary 

walls is negligible. Also, the first peak of each pair is always broader than the 
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Figure 6. The activity change of individual LDH-1 molecules with time at 21 

°C. Two 1 hour incubation periods separated by electrophoresis for 

3 min were employed in the experiment, creating pairs of peaks. 

The solution concentration was 4.5 x lO-i'^ M. Other conditions 

were same as in Figure 2 except that a 75 cm section was 

monitored. 
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second because of the longer time available for axial diffusion. The peak widths 

are narrower than those in Figure 2, which is consistent with viscosity 

differences at the two temperatures. Finally, the peak areas in Figun-e 2 are 3-

4 times larger than those in Figure 6, as predicted from typical activation 

energies within this temperature range. 

Most importantly, the intensities of the pairs of peaks in Figure 6 remain 

constant, with an average ratio for 18 molecules of 1.03 ± 0.11 as shown in 

Figure 7. Clearly, the reactivities are not influenced by the local environment, 

e.g. wall interactions. This also shows that the differences in reactivities among 

LDH-1 molecules, which can be as large as a factor of four, are real. This 

constancy of LDH-1 activity over a two-hour period is consistent with 

expectation 

Differences in activities amongst individual LDH-1 molecules can best be 

explained by specific stable conformational arrangements of the 4 identical sub-

units i'-*, making certain active sites less accessible than others for reaction. 

Indeed, reassociation of LDH at similar temperatures after denaturation is 

known to lead to structural variants that exhibit different physical and chemical 

properties -i, enzyme activity and spectroscopic properties The continuous 

distribution of peak areas (Figure 5) indicates the presence of several 

conformers. Such insights are unique to single-molecule studies. 

This concept can be extended to any species that can catalyze the 

production of a suitable fluorophore. With the appropriate linkage of LDH-1 to a 

hybridization tag or to an antibody, practically any molecule can be counted in 

this way. Each molecule can be characterized, not just counted. The protocol 

described here also demonstrates how single molecules can be selected and 
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collected in a small volume, e.g. in diagnostics and in biotechnology because 

one can extrapolate from the electrophoretic mobilities when each molecule will 

elute out of the capillary. 
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DETERMINATION OF LACTATE DEHYDROGENASE 

ISOENZmES IN SINGLE LYMPHOCYTES 

FROM NORMAL AND LEUKEMIA CELL LINES 

A paper submitted to Analytical Biochemistry 

Qifeng Xue and Edward S. Yeung 

ABSTRACT 

This work demonstrates that our previously developed technique for 

single erythrocyte analysis by capillary electrophoresis with laser-induced 

fluorescence detection (CE-LIF) can be applied to study individual lymphocytes, 

with some modification in the cell lysing procedure. A tesla coil was shown to be 

capable of lysing the lymphocyte cells inside the capillary. The electromagnetic 

field induced by the tesla coil was believed to be responsible for breaking the cell 

membrane. The lactate dehydrogenase (LDH) isoenzyme activities and the 

relative ratios between different LDH isoenzymes were measured for normal 

lymphocytes as well as B-type and T-type acute lymphoblastic leukemia cells. 

Both the LDH activity and the isoenzyme ratios show large variations among 

individual cells. The former is expected due to variations in cell size. The latter 

implies that single-cell measurements are less useful than the average values 

over a cell population as markers for leukemia. 
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INTRODUCTION 

The timely diagnosis of cancer (or carcinoma) is very important for the 

treatment and even cure of the disease. It is well known that before morpho­

logical changes are detectable, cytochemical changes have long undergone 

gradual transformation. The concentrations of many molecular markers or 

biomarkers (e.g. growth factors, proteins, polyamines, DNA adducts, etc.) are 

constantly changing during carcinogenesis. Much effort therefore has been and 

will continuously be put into finding and defining potential molecular markers 

for different kinds of cancers. Amongst these markers, the enzymes attracted 

much attention because they control the balance of cytochemicals and actively 

participate in the cell proliferation process. As investigated previously,3)4,7-9 

enzymes might show different activity in tumor cells compared to that in normal 

cells, and some isoenzymes even showed different patterns. 

Lactate dehydrogenase (LDH) has been found to be a very valuable 

enzyme in diagnosing different kinds of diseases, such as liver disease, 

myocardial infarction, etc.l® More significantly, many researchers noticed that 

both the LDH activity and the LDH isoenzyme patterns in serum are potential 

biomarkers for different cancersll»12 and leukemia.13 In the sera collected 

from cancer patients, the LDH-2 form generally showed an elevated activity, 

even when the total LDH level was normal. However, the results were not very 

consistent among different groups of patients. The intracellular LDH activity 

and the ratio for isoenzyme activity in lymphoblastic leukemia cells were also 

quantifiedl4 from large amounts of lysed cells. The measured activity indicated 

that LDH-4 has a relatively higher activity while the total LDH activity is lower 

than that in the normal lymphocytes. Also, the LDH-4/LDH-2 activity ratio is 
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higher in lymphocytic leukemia cells than in the normal lymphocytes. 

Furthermore, the investigation by Bottomley et al.l^ indicates the possibility of 

using LDH activity to classify leukemia. 

Recently, capillary electrophoresis has become a powerful tool for studying 

intracellular components in different kinds of single cells.By coupling to dif­

ferent detection methods, a large variety of intracellular components were 

probed, e.g. neurotransmitters and amino acids in neurons and adrenal 

medullary cells with electrochemical detection,and proteins and small ions 

in red blood cells with laser-induced fluorescence detection.20-24 More recently, 

the catecholamines in single adrenal medullary cells were successfully 

determined with LIF detection by carefully controlling the pH.25 The 

techniques developed for quantifying the LDH activity in single red blood cel ls22 

and the sensitivity achieved for monitoring the reactivity of single enzyme 

molecules26 should enable us to quantify accurately the LDH isoenzyme 

activities for single lymphocytes. Therefore, the side-by-side analyses of normal 

lymphocytes and acute lymphoblastic leukemia cells will lend some insight 

about the difference in LDH activity between these cells and the possibility of 

using these as markers for leukemia. 

EXPERIMENTAL SECTION 

Instrumentation. The same home-made capillary electrophoresis 

apparatus as described before22 was used throughout this study. Briefly, the 

mixture of 350 nm and 360 nm laser lines from an Ar ion laser (Model Innova 

90-6, Coherent, Palo Alto, CA) was used as the excitation source at a power of 

100 mW. A 1-cm focal length quartz lens was used to focus the laser beam to the 
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detection window on the capillary. Fused-silica capillaries, 22 pm i.d. and 350 

pm o.d. with total length of 75 cm and effective length of 55 cm, were used for 

separating the LDH isoenzymes and as the micro-reactor for carrying out the 

enzymatic reactions. To minimize the background from stray light, a 380-nm 

cut-off filter and a 465-nm interference filter (10 nm bandwidth) were used in 

front of the photomultiplier tube window. A voltage of +30 kV was applied 

across the capillary for separation and for driving the individual product zones 

through the capillary. 

Detection method. In the running buffer (20 mM phosphate, pH 7.4), 1 

mM NAD+ and 3 mM lactate were added as the substrates for the enzymatic 

reaction. The reaction direction was chosen as follows: 

LDH 

Lactate + NAD+ > NADH + Pyruvate 

which is opposite to the natural reaction direction. One of the major reasons 

is the low background associated with the low fluorescence efficiency of NAD"^. 

Another is to avoid the inhibiting effect of pjrruvate at high concentration on 

LDH.27 Since the average volume of lymphocytes is at the pL range and the 

LDH enzyme is one of the minor proteins, the total LDH amount is much less 

than the amount of substrates available for the catalyzed reaction. At these 

conditions (pseudo-first-order reaction), the amount of NADH formed during a 

given period of time at a fixed temperature is linearly proportional to the LDH 

amount, more precisely to LDH activity. Therefore, the LDH activity can be 

quantified by measuring the amount of NADH formed during the fixed 

incubation period. In this work, longer separation times (3 min) and incubation 
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times (5 min) were used to achieve a better S/N ratio for the enzyme assay to 

improve the measurement accuracy. 

Cell treatment and injection. Normal human lymphocytes, T-type and 

B-type lymphoblastic leukemia cells were purchased from American Type 

Culture Collection (Rockville, MD). The cell lines were analyzed as received 

without further culturing. Usually, the cell lines were used as soon as possible 

after we received them. If not analyzed immediately, the cells were stored at a 

frozen state. Before doing the single cell experiments, the cell lines were first 

thawed. Then, the same washing procedure and injection process as before^S 

were used to isolate the cells and inject a single cell into the capillary for 

analysis. 

RESULTS AND DISCUSSION 

In the previous work on red blood cells 20-24^ the running buffer readily 

lyses the cells in a short period of time (~ a few seconds) such that electro­

phoresis was able to be carried out immediately after cell injection. However, 

the Ijnmphocytes are so rugged that special techniques are required to break 

them apart. For lysing a relatively large amount of cells, several methods had 

been demonstrated to be applicable, e.g. mechanical homogenizer,!^ ultrasonic 

device,14 quick freeze-thaw cycle,15 chemical reagents.25 When we tried to 

apply these techniques to lyse a single lymphocyte inside the capillary, there are 

some problems preventing these methods from being directly applicable. 

From our experience, although the ultrasonic device can be used to lyse 

the cell inside the capillary, it also produces large disturbances, which dilute the 

intracellular components after their release in the buffer. This makes 
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quantification very difficult. In the quick freeze-thaw method (with liquid N2), 

lots of bubbles were produced inside the capillary after going through several 

cycles. The bubbles make it impossible to run capillary electrophoresis. 

Surfactants (e.g. SDS) were also tried for lysing the cell. These can lyse the cell 

in a very short period of time even at as low a concentration as 0.1%. 

Unfortunately, SDS also denatures the LDH isoenzymes, making it impossible 

to quantify the LDH activity. 

Teissie^S discussed that an external electric field could increase the cell 

membrane permeabilization and even break the cell membrane if the external 

voltage across the membrane is above -200 mV. This prompted us to find a way 

to apply a voltage to induce an external electric field on the cell membrane for 

cell lysing. We tried to use a tesla coil to induce an electric field and found that 

it was able to lyse the cell in a reasonable period of time (-15 to 20 s). The 

lysing process is shown schematically in Figure 1. After a single cell was 

injected into the capillary, the capillary was moved away from the microscope 

and fixed on top of a plastic rod. The capillary inlet was then covered with a 

short piece of teflon tubing to avoid introducing bubbles into the capillary. On 

touching the tip of the tesla coil to the outside of the teflon tube, the induced 

electric field on the capillary wall passes on to the cell membrane. After the cell 

was lysed, the capillary was moved back to the buffer vial to initiate the on-

column enzyme assay. 

To investigate the effect of the tesla coil on the LDH activity, a LDH 

standard mixture was analyzed at conditions with and without applying the 

tesla coil after sample injection. The same conditions as used for single cell 

analysis were used for the standard assay. As shown in Figure 2, the LDH 
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Figure 1. Method for lysing single lymphocytes with a tesla coil. 
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Figure 2. The effect of tesla-coil treatment on LDH activity. The conditions 

for on-capillary LDH assay of the standard mixture are described in 

the text. Bottom, with, and top, without tesla-coil treatment. 
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activity did not show noticeable differences between the experiments with and 

without the tesla coil treatment. The tesla coil is thus a good tool for lysing 

individual lymphocytes and similar cells for analysis by CE. 

Figure 3 shows electropherograms for the analysis of a LDH standard 

mixture (a) and lysates of normal lymphocyies (b), and T-type (c) as well as B-

type (d) acute lymphoblastic leukemia cells. The LDH isoenzjmies are nicely 

separated by running electrophoresis for 3 min, as confirmed by the LDH stan­

dards. Both the migration times and the peak patterns indicate that the major 

LDH isoenzymes in lymphocytes are LDH-3 and LDH-4, which are quite 

different from the patterns in red blood cells where the major forms are LDH-1 

and LDH-2. The distribution of LDH isoenzymes are organ dependent.29 The 

LDH isoenzyme abundance follows the order: LDH-3 > LDH-4 > LDH-5 > LDH-

2 > LDH-1, which is different firom the order (LDH-3 > LDH-2 > LDH-4 > LDH-

1, LDH-5) reported in ref. 27. 

In Figure 4, electropherograms of a single-cell analysis for each cell line 

are shown. Usually, three or four peaks were observed for most of the individual 

cell analyses. In several experiments, we observed 5 peaks, corresponding to the 

5 LDH isoenzjrmes. The percentage for successful single-lymphocyte analysis as 

a fraction of all cell injections is about 40%, substantially lower than that of 

about 80% for red blood cell analysis. The likely reason is related to the cell 

lysing process, which is not as gentle or as complete as the hypertonic lysing 

process. The tesla coil can sometimes cause a relatively large disturbance that 

moves the cell out of the capillary. At other times it may not produce enough 

shock to break the cell membrane. Also, since the tesla coil only breaks the cell 

membrane, the undissolved membrane debris may produce extra peaks. 
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Electropherograms for the analysis of a LDH standard mixture (a), 

lysed normal lymphocytes (b), lysed T- type (c) and lysed B-type (d) 

lymphoblastic leukemia cells. 



www.manaraa.com

Relative Fluorescence 

€» 

U 

CD 

r 

CM 

0 

U 



www.manaraa.com

Figure 4. Electropherograms for single-cell analysis, (a) normal lymphocyte; 

(b) T-type lymphoblastic cell; and (c) B-type lymphoblastic cell. 
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As we observed in ref. 22, the migration time changes after several cells are 

analyzed due to the adsorption of intracellular proteins and the cell membrane 

materials. We found that the capillary can be reconditioned by simply flushing 

with running buffer and re-equilibrating for 30 min. 

The size of the lymphocytes varied in a fairly large range, with diameters 

of 6 pm to 14 |im.30 The size variations can be confirmed by using a lOOx 

microscope objective during the process of single-cell injection. It is very difficult 

to pick up only cells of a uniform size to be injected for analysis. As we expected 

from the large size variations, the intracellular LDH activities showed quite 

large variations, as shown in Figure 5. If a size-sorting method was used to put 

the lymphocytes into groups with uniform sizes, the absolute intra-cellular LDH 

activity would be more meaningful. The cell age might also be a big factor for 

the large activity variations because of the long life span of the lymphocytes.30 

The average total LDH activity for the normal lymphocytes is higher than that 

in both B-type and T-type lymphoblastic leukemia cells. From the cells studied, 

the average LDH activities are 6.3, 5.2 and 5.0 nlU respectively for the normal 

lymphocytes, T-type and B-type leukemia cells. 

Even though there is large size variation (> 10 x in volume) among the 

cells, the ratio of different LDH isoenzymes might remain constant if the cells 

were at the same health state and metabolic state. The LDH-4/LDH-2 ratio was 

observed to be elevated in the serum of different cancer patients,3l!32 and in the 

leukemia cells from the analysis of cell lysates.l^ Therefore, we also examined 

this ratio for individual normal Ijonphocytes (Fig. 6a) and for individual acute 

Ijonphoblastic leukemia cells (Fig. 6b, c). During single-cell analysis, the on-
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Figure 5. Relative LDH activity in individual cells, (a) normal lymphocyte; 

(b) T-type lymphoblastic cell; and (c) B-type lymphoblastic cell. 

Cross hatched, LDH-1; empty, LDH-2; light-hatched, LDH-3; heavy 

hatched, LDH-4; and solid, LDH-5. The vertical scales are (a) 0-

18,000; (b) 0-14,000; and (c) 0-10,000. 
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Figure 6. LDH-4/LDH-2 ratios of individual cells for different cell lines, (a) 

normal lymphocyte; (b) T-type lymphoblastic cell; and (c) B-type 

lymphoblastic cell. To the right of each plot, the average ratio 

(cross) and the standard deviation (horizontal lines) are also shown. 
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capillary enzyme assay was calibrated frequently by using LDH standards. The 

variations were less than 15%, which indicated that the method is reliable and 

reproducible. On the average, the LDH-4/LDH-2 ratios for both T-type and B-

type leukemia cells were 43% and 73% higher than that for the normal 

lymphocytes. The difference between T-type and B-type leukemia cells is also 

reasonable, as they have different functions and are formed in different 

organs.30 Nevertheless, Figure 6 shows that the observed elevation did not 

apply to every single cell in a given cell line. It appears that a reasonable 

number of cells need to be analyzed before any conclusions can be reached about 

their state of health. If many cells (> 10®) are available, the analysis of cell 

hemolysate will be advantageous in terms of providing an average value, 

convenience, and accuracy. Of course, if there is only a limited number of cells 

available for analysis, the single-cell technique here will stand in for providing 

statistical information about the intracellular components. The low detection 

limit offered by this technique and the small amount of material required for one 

measurement are still beneficial, particularly when applied to the routine 

monitoring of intracellular enzymes for less abundant entities, such as white 

blood cells. 
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GENERAL SUMMARY 

Capillary electrophoresis has experienced rapid advancements in the last 

few years in both instrumental developments and applications. The progress 

recently achieved in biotechnology and biodiagnostics make CE a more widely 

acceptable technique as a bioanalytical separation tool. The successful 

applications of CE in DNA separation and sequencing make it viable to sequence 

the human genome, and to be widely used in disease diagnosis by monitoring the 

PCR amplification products. Scientific progress is advancing at a dramatic pace, 

and revealing lots of challenges in a variety of areas. Many research projects 

appeal the cooperative efforts of scientists working in different disciplines. The 

requirements for more sensitive detection schemes and versatile separation 

methods create many opportunities for the future. 

This dissertation work has described developments in the separation 

schemes and detection approaches for analyses of trace amounts of analytes in a 

complex matrix such as cytoplasm. The developed techniques for the analysis of 

intracellular components established the possibility to extend these techniques 

to analyze other single cells and extremely small amounts of samples. The 

capability of monitoring single enzyme molecules makes it possible to analyze 

any species tagged with the enzyme, and to investigate catalytic reactions at the 

single molecule level. Based on the protocols developed in this work, future 

studies could be extended to disease diagnosis with single cell analysis and to 
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the single molecule analysis and manipulation. Environmental effects on 

enzyme molecules also could be investigated at the single molecule level. 
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